SENIOR SIX PHYSICS HOLIDAY WORK

P510/3

physics practical (manipulation of data)

(write the solutions in the last three pages of your work books)

1. The results below were obtained in in an experiment to determine Young's modulus, *E*, of the material of the metre rule.

$$t = 5.98$$
mm, $b = 2.52$ cm

For
$$l_1 = 0.950$$
m $P_0 = 0.434$ m, $P = 0.130$ m

- a) Find the depression $y_1 = P_0 P$. For l_2 = 0.900m P_0 = 0.374m, P= 0.110m.
- b) Find the depression $y_1 = P_0 P$.
- c) Calculate Young's modulus, E_1 , from the expression E_1 , $=\frac{2Mg}{bt^3}(\frac{l_1^3}{v_1}+\frac{l_2^3}{v_2})$ where M= 0.200kg and $g = 9.81ms^{-2}$.

d)

l(m)	$P_0(cm)$	P(cm)
0.900	19.6	28.5
0.800	19.3	25.1
0.700	18.9	22.9
0.600	18.7	21.0
0.500	18.6	20.1
0.400	18.5	19.3

Draw table including values of $x = (P - P_0)$ in metres, $log_{10}x$ and $log_{10}l$.

- e) Plot a graph of $log_{10}x$ against $log_{10}l$.
- f) Read and record the intercept, C on the $log_{10}l$ a-xis
- g) Calculate Young's modulus, E_2 , from the expression, $C = log_{10}(\frac{mg}{4E_2ht^3})$ where m= 0.500kg and $g = 9.81ms^{-2}$.
- h) Calculate Young's modulus, E from the expression $E = \frac{1}{2}(E_1 + E_2)$
- 2. The results below were obtained in an experiment to determine the resistance per metre of the material of the wire.

$$l_1$$
= 30.0cm l_2 = 70.0cm l_1 = 0.72A l_2 = 0.42A l_2 = 1.65V l_2 = 1.95V

- a) Calculate the resistance per metre, r_1 , of the material of the wire from the expression, $r_1 = \frac{1}{2} \left(\frac{V_1}{I_1 l_1} + \frac{V_2}{I_2 l_2} \right)$

b)

<i>x</i> (m)	l(cm)
0.200	25.5
0.300	30.5
0.400	37.4
0.500	42.4
0.600	46.9
0.700	51.9

- c) Draw table including values of $\frac{1}{l}$ and $\frac{1}{x}$.
- d) Plot a graph of $\frac{1}{l}$ against $\frac{1}{x}$. e) Find the slope, S of the graph.
- f) Calculate the resistance per metre, r_2 , from the expression, $r_2 = \frac{R_S}{S}$ where $R_S = 5.0\Omega$. g) Calculate the resistance per metre, r, from the expression, $r = \frac{r_1 + r_2}{2}$.

END